Accurate Short-Term Yield Curve Forecasting Using Functional Gradient Descent
نویسندگان
چکیده
منابع مشابه
Forecasting Recessions Using the Yield Curve
We compare forecasts of recessions using four different specifications of the probit model: a time invariant conditionally independent version; a business cycle specific conditionally independent model; a time invariant probit with autocorrelated errors; and a business cycle specific probit with autocorrelated errors. The more sophisticated versions of the model take into account some of the po...
متن کاملFunctional Dynamic Factor Models with Application to Yield Curve Forecasting
Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which conn...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملYield curve modeling and forecasting using semiparametric factor dynamics
Using a Dynamic Semiparametric Factor Model (DSFM) we investigate the term structure of interest rates. The proposed methodology is applied to monthly interest rates for four southern European countries: Greece, Italy, Portugal and Spain from the introduction of the Euro to the recent European sovereign-debt crisis. Analyzing this extraordinary period, we compare our approach with the standard ...
متن کاملForecasting the Yield Curve using Priors from No Arbitrage Affine Term Structure Models
In this paper we propose a strategy for forecasting the term structure of interest rates which may produce significant gains in predictive accuracy. The key idea is to use the restrictions implied by Affine Term Structure Models (ATSM) on a vector autoregression (VAR) as prior information rather than imposing them dogmatically. This allows to account for possible model misspecification. We appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2007
ISSN: 1556-5068
DOI: 10.2139/ssrn.999515